Wyznaczanie charakterystyki pompy wirowej

1. Przygotowanie stanowiska pomiarowego

Ćwiczenie będzie wykonywane na stanowisku służącym do badania pompy wirowej odśrodkowej FM50, której schemat przedstawiony jest poniżej (rys. 1). W celu wykonania ćwiczenia należy przygotować:

- komputer z zainstalowanym oprogramowaniem "FM50" firmy Armfield
- jednostkę zasilająco-pomiarową IFD7
- stanowisko do badania pompy odśrodkowej FM50

Rys. 1. FM50 Układ pompy wirowej

Wszystkie wymienione wyżej elementy stanowiska należy połączyć za pomocą przygotowanych przewodów. Komputer łączymy z jednostką zasilająco-pomiarową IFD7 za pomocą przewodu z końcówką USB, natomiast stanowisko do badania pomp odśrodkowych FM50 z IFD7 za pomocą pozostawionych wolnych wtyk przy stanowisku FM50. Gniazdo i wtyk sa tak dobrane, aby niebyło możliwości złego podłączenia. Przed podłączeniem przewodów należy zwrócić uwagę na wielkość gniazda i wtyki, zlokalizować karb zabezpieczający na obwodzie wtyki i gniazda oraz zorientować się w ilości pinów w gnieździe i we wtyczce. Po wykonaniu czynności podłączeniowych należy sprawdzić podłączenie przewodów zasilających do sieci od IFD7 oraz komputera. Gniazdo zasilające znajduje się z tyłu jednostki zabezpieczenia przeciw porażeniem IFD7 obok pradem elektrycznym. Po włączeniu komputera i sterownika IFD7 na panelu przednik IFD7 powinna zapalić się czerwona i zielona kontrolka (rys. 2). Na frontowym panelu IFD7 włączamy zasilanie za pomocą czerwonego przełącznika (rys. 3), który zostanie podświetlony Na komputerze uruchamiamy program sterujący pompą FM50. Po uruchomieniu programu w prawym dolnym rogu aplikacji powinna pokazać się informacja "IFD: OK"

Rys. 2. Kontrolki zasilania oraz gotowości do działania

Rys. 3. Główny włacznik

2. Cel ćwiczenia i procedura wykonania

Głównym celem ćwiczenia jest wykonanie charakterystyki pracy maszyny sprężającej przy stałej prędkości obrotowej wirnika. W tym celu należy dokonać pomiarów wielkości charakteryzujących pracę maszyny i zapiać je w sprawozdaniu.

Rys. 4. Diagram okna komputerowego, gdzie: 1- moment, 2- prędkość obrotowa, 3- wysokość podnoszenia, 4sprawność, 5- zielona "lampka" urządzenie włączone, 6- włącznik pompy, 7- ustawienie procentowe prędkości obrotowej pompy, 8- temperatura cieczy, 9- strumień objętości, 10- ciśnienie na wypływie z wirnika pompy, 11ciśnienie na dopływie na wirnik pompy

Świczenie wykonujemy w zespołach dwuosobowych.

- 1. Przed przystąpieniem do pomiarów należy zapoznać się ze stanowiskiem w celu zidentyfikowania poszczególnych elementów oraz określić kierunek przepływu cieczy.
- 2. Zawór kulowy umiejscowiony na części ssącej układu ustawiamy w pozycji otwartej.
- 3. Zawór grzybkowy zlokalizowany na części tłocznej stanowiska również powinien znajdować się w pozycji całkowicie otwartej.
- 4. W ramce "Controls" włączmy pompę (klikamy kursorem na ikonkę z cyfrą "O", powinna się zamienić na cyfrę "1") oraz ustawiamy jej wartość na 100%.
- 5. Przy wykonywaniu charakterystyki pomp przy stałej prędkości obrotowej, zmiennym parametrem będzie strumień objętości, regulowany za pomocą zaworu grzybkowego umiejscowionego na rurociągu tłoczącym.
- Odczytujemy maksymalny strumień objętości, następnie dzielimy go na 15 części, które będą stanowiły kolejne punkty pomiarowe. Wartości strumienia objętości regulowane za pomocą zaworu ustawiamy z dokładnością do ±0.05 [l/s].
- 7. W otrzymanych punktach pomiarowych odczytujemy i zapisujemy parametry wyszczególnione w tabeli pomiarowej.
- 8. Po zakończeniu pomiarów wyłączamy pompę przyciskiem znajdującym się w ramce "Controls" (klikamy kursorem na ikonkę z cyfrą "1", powinna się zamienić na cyfrę "o").
- 9. Kolejna para wykonuje ćwiczenie według tej samej procedury lecz ze zmniejszoną nastawą pompy od 5% do 10%.
- 10. Po zakończeniu pomiarów przez wszystkie grupy należy wyłączyć pompę, zamknąć program, wyłączyć komputer oraz wyłączyć zasilanie kontrolera IFD-7 za pomocą podświetlonego na czerwono przełącznika (rys. 3) podświetlenie powinno zgasnąć.

POLITECHNIKA POZNAŃSKA Instytut Energetyki Cieplnej ite.put.poznan.pl												
Temat: Wyznaczanie charakterystyk pomp wirowych połączonych szeregowo lub równolegle												
Imię Nazwisko:				Rok akademicki:								
Nr indeksu:				Grupa:								
Data wykonania	:	Data zaliczenia:	Ocena ze spra	wdzianu:	Ocena z ćwiczenia:							

1. Schemat stanowisk (narysować)

2. Tabela pomiarowa

Ciśnienie																	
otoczenia- p _{ot}		Je															
	Ра	dnostl	Wartosci ouczytane														
Wielkość mierzone			1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Ciśnienie na wejściu do wirnika		kPa															
	ps	Ра															
Ciśnienie na wyjściu z wirnika	Pt	kPa															
		Ра															
Temperatura cieczy	t	°C															
Strumień objętości	Ŵ	$\frac{l}{s}$															
		$\frac{m^3}{s}$															
Wysokość podnoszenia	Н	m															
Prędkość obrotowa	n	obr min															
Moment obrotowy na wale	М	$N \cdot m$															

3. Tabela przeliczeniowa

Wielkość obliczone		Jednostki	Wartości obliczone													
			1	2	3	4	5	6	7	8	9	10	11	12	13	14
Całkowity przyrost ciśnienia	$\Delta P_{c} = p_{ot} + p_{t} - (p_{ot} + p_{s})$	Ра														
Prędkość kątowa wału	$\omega = \frac{2 \cdot \pi}{60} \cdot n$	$\frac{rad}{s}$														
Moc na wale	$P_{_{\scriptscriptstyle W}}=M\cdot arnothing$	W														
Moc efektywna	$P_e = g \cdot \rho \cdot H \cdot \dot{V}$	W														
Sprawność	$\eta_0 = \frac{\dot{\mathbf{V}} \cdot \Delta \mathbf{P}_c}{\mathbf{P}_w} \cdot 100$	%														

4. Charakterystyka pompy wirowej

Wykres wysokości podnoszenia H, sprawności η i przyrostu ciśnienia ΔP_c do strumienia objętości \dot{V}

- 5. Wnioski i podsumowanie
 - a. Znalezienie parametrów znamionowych dla wielkości charakterystycznych pompy
 - b. Opis charakterystyki pompy wirowej.